- PM Modi visit USAOnly the mirror in my washroom and phone gallery see the crazy me : Sara KhanKarnataka rain fury: Photos of flooded streets, uprooted treesCannes 2022: Deepika Padukone stuns at the French Riviera in Sabyasachi outfitRanbir Kapoor And Alia Bhatt's Wedding Pics - Sealed With A KissOscars 2022: Every Academy Award WinnerShane Warne (1969-2022): Australian cricket legend's life in picturesPhotos: What Russia's invasion of Ukraine looks like on the groundLata Mangeshkar (1929-2022): A pictorial tribute to the 'Nightingale of India'PM Modi unveils 216-feet tall Statue of Equality in Hyderabad (PHOTOS)
Hockey India on Monday announced the 20-member squad for the Men's Junior Asia Cup, a qual
- Harmanpreet Singh named FIH Player of the Year, PR Sreejesh gets best goalkeeper award
- World Boxing medallist Gaurav Bidhuri to flag off 'Delhi Against Drugs' movement on Nov 17
- U23 World Wrestling Championship: Chirag Chikkara wins gold as India end campaign with nine medals
- FIFA president Infantino confirms at least 9 African teams for the 2026 World Cup
- Hockey, cricket, wrestling, badminton, squash axed from 2026 CWG in Glasgow
Glacier shape can predict melting risk Last Updated : 18 Apr 2017 02:02:26 PM IST File photo
Analysing how glaciers are shaped can help scientists identify which one of them are susceptible to thinning, says a study.
Just how prone a glacier is to thinning depends on its thickness and surface slope, features that are influenced by the landscape under the glacier, said the study published in the journal Nature Geoscience.
The research could help predict how much the Greenland Ice Sheet will contribute to future sea level rise in the next century, a number that currently ranges from inches to feet.
The Greenland Ice Sheet is the second largest ice sheet on Earth and has been losing mass for decades, a trend scientists have linked to a warming climate.
However, the mass change experienced by individual coastal glaciers, which flow out from the ice sheet into the ocean, is highly variable. This makes predicting the impact on future sea-level rise difficult.
"We were looking for a way to explain why this variability exists, and we found a way to do it that has never been applied before on this scale," said lead author Denis Felikson, a graduate research assistant at The University of Texas Institute for Geophysics (UTIG) in the US.
Of the 16 glaciers researchers investigated in West Greenland, the study found four that are the most susceptible to thinning: Rink Isbrae, Umiamako Isbrae, Jakobshavn Isbrae and Sermeq Silardleq.Three of them - Umiamako Isbrae, Sermeq Silardleq and Jakobshavn Isbrae - are already losing mass, with Jakobshavn being responsible for more than 81 per cent of West Greenland's total mass loss over the past 30 years.
Rink has remained stable since 1985, but through shape analysis researchers found that it could start to thin if its terminus, the front of the glacier exposed to ocean water, becomes unstable. This is a strong possibility as the climate continues to warm.
"Not long ago we didn't even know how much ice Greenland was losing, now we're getting down to the critical details that control its behaviour," Tom Wagner, director of NASA's cryosphere programme, which sponsored the research, said.
The analysis works by calculating how far inland thinning that starts at the terminus of each glacier is likely to extend.
Glaciers with thinning that reaches far inland are the most susceptible to ice mass loss, the study said.IANS For Latest Updates Please-
Join us on
Follow us on
172.31.16.186